Lagrangian isotopies and symplectic function theory
نویسندگان
چکیده
منابع مشابه
Lagrangian isotopies in Stein manifolds
Studying the space of Lagrangian submanifolds is a fundamental problem in symplectic topology. Lagrangian spheres appear naturally in the Leftschetz pencil picture of symplectic manifolds. In this paper we demonstrate the uniqueness up to Hamiltonian isotopy of the Lagrangian spheres in some 4-dimensional Stein symplectic manifolds. The most important example is the cotangent bundle of the 2-sp...
متن کاملIsotopies of high genus Lagrangian surfaces
It is shown that in a symplectic 4-manifold any two C0 close, homotopic Lagrangian submanifolds are smoothly isotopic.
متن کاملRuled 4-manifolds and isotopies of symplectic surfaces
We study symplectic surfaces in ruled symplectic 4-manifolds which are disjoint from a given symplectic section. As a consequence, in any symplectic 4-manifold two symplectic surfaces which are C close must be Hamiltonian isotopic.
متن کاملRational Symplectic Field Theory over Z2 for Exact Lagrangian Cobordisms
We construct a version of rational Symplectic Field Theory for pairs (X, L), where X is an exact symplectic manifold, where L ⊂ X is an exact Lagrangian submanifold with components subdivided into k subsets, and where both X and L have cylindrical ends. The theory associates to (X, L) a Z-graded chain complex of vector spaces over Z2, filtered with k filtration levels. The corresponding k-level...
متن کاملLagrangian spheres, symplectic surfaces and the symplectic mapping class group
Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1, we find embedded symplectic surfaces intersecting it minimally. When the Kodaira dimension κ of (M,ω) is −∞, this minimal intersection property turns out to be very powerful for both the uniqueness and existence problems of Lagrangian spheres. On the uniqueness side, for a symplectic rational manifold and any class which is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentarii Mathematici Helvetici
سال: 2018
ISSN: 0010-2571
DOI: 10.4171/cmh/451